skip to main content


Search for: All records

Creators/Authors contains: "Yao, Shuochao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Chen, Jian-Jia (Ed.)
    The paper discusses algorithmic priority inversion in mission-critical machine inference pipelines used in modern neural-network-based cyber-physical applications and develops a scheduling solution to mitigate its effect. In general, priority inversion occurs in real-time systems when computations that are of lower priority are performed together with or ahead of those that are of higher priority. 1 In current machine intelligence software, significant priority inversion occurs on the path from perception to decision-making, where the execution of underlying neural network algorithms does not differentiate between critical and less critical data. We describe a scheduling framework to resolve this problem and demonstrate that it improves the system's ability to react to critical inputs, while at the same time reducing platform cost. 
    more » « less
  3. null (Ed.)
    Recently, significant efforts are made to explore device-free human activity recognition techniques that utilize the information collected by existing indoor wireless infrastructures without the need for the monitored subject to carry a dedicated device. Most of the existing work, however, focuses their attention on the analysis of the signal received by a single device. In practice, there are usually multiple devices "observing" the same subject. Each of these devices can be regarded as an information source and provides us an unique "view" of the observed subject. Intuitively, if we can combine the complementary information carried by the multiple views, we will be able to improve the activity recognition accuracy. Towards this end, we propose DeepMV, a unified multi-view deep learning framework, to learn informative representations of heterogeneous device-free data. DeepMV can combine different views' information weighted by the quality of their data and extract commonness shared across different environments to improve the recognition performance. To evaluate the proposed DeepMV model, we set up a testbed using commercialized WiFi and acoustic devices. Experiment results show that DeepMV can effectively recognize activities and outperform the state-of-the-art human activity recognition methods. 
    more » « less